

Elmer on Intel Xeon Phi

Elmer on Intel Xeon Phi

CSC-IT Center for Science Ltd. <u>Mikko Byckling</u> (mikko.byckling@csc.fi), Olli-Pekka Lehto (olli-pekka.lehto@csc.fi), Elmer Team

Contents

- Introduction to Elmer
- Porting Elmer to MIC
- Current status and performance
- Threading legacy code
- Future developments for Elmer
- Conclusions

Elmer: Finite element software for multiphysical problems

CSC

- Developed and maintained by CSC
- Used by thousands of researchers worldwide
- Licensed under (L)GPLv2
- Contains a large set of ready-made physical models
- Readily extensible by end user
- http://www.csc.fi/elmer

Elmer components

- Elmer is a suite of several programs
- Components can be used independently
- ElmerGUI: Pre- and Postprocessing
- ElmerGrid: structured meshing and mesh import
- ElmerSolver: Solution
- ElmerPost: Postprocessing
- Others: ElmerFront, ElmerParam, MATC, Mesh2D

CSC

Elmer on Intel Xeon Phi (MIC)

CPU: Preprocessing and mesh generation

- CPU/MIC: Solution of the physical problem
- CPU: Postprocessing of the results

Porting effort:

ElmerSolver and associated libraries

Elmer programming languages

- Fortran90 (and newer)
 - ElmerSolver (~210,000 lines, ~50% in DLLs)
- - ElmerGUI (~18,000 lines)
 - ElmerSolver (~10,000 lines)
- C
 - ElmerPost
 - ElmerGrid (~30,000 lines)
 - MATC (~11,000 lines)

Elmer: Physical Models

Heat transfer

- Heat equation
- Radiation with view factors
- convection and phase change

Fluid mechanics

- Navier-Stokes (2D & 3D)
- RANS: SST k- Ω , k- ε , v^2 -f
- LES: VMS
- Thin films: Reynolds (1D & 2D)

Structural mechanics

- General Elasticity (unisotropic, lin & nonlin)
- Plate, Shell
- Acoustics
 - Helmholtz
 - Linearized time-harmonic N-S
- Species transport
 - Generic convection-diffusion equation

Electromagnetics

- Steady-state and harmonic analysis

CSC

 Whitney element formulation for magnetic fields

Mesh movement (Lagrangian)

- Extending displacements in free surface problems
- ALE formulation
- Mortar finite elements

Level set method (Eulerian)

- Free surface defined by a function
- Electrokinetics
 - Poisson-Boltzmann
- Thermoelectricity
- Quantum mechanics
 - DFT (Kohn Scham)
- Particle Tracker

Elmer: Numerical Methods

- Time-dependency
 - Static, transient, eigenmode, scanning
- Discretization
 - Element families: nodal, edge, face, and p-elements, DG
 - Formulations: Galerkin, stabilization, bubbles
- Linear system solvers
 - Direct: Lapack, Umfpack, SuperLU, Mumps, Pardiso
 - Iterative Krylov subspace methods (Internal, Hypre)
 - Preconditioners: ILU, AINV, Multigrid (Internal, Hypre, Trilinos)
 - Multigrid solvers (GMG, AMG) (Internal, Hypre, Trilinos)
 - FETI (with Mumps)
- Parallellism (MPI / OpenMP)
 - Mesh multiplication, parallel finite element assembly
 - Linear system solution (Krylov methods, Multigrid)

Elmer: Multiphysics features

Solver is an abstract dynamically loaded object

- May be developed and compiled using an API to the main library
- No upper limit to the number of Solvers (currently ~50 available)
- Solvers may be active in different domains and meshes
 - Automatic mapping of field values
- Solvers may be weakly coupled without any a priori defined manner
- Tailored methods difficult strongly coupled problems
 - Consistent modification of equations (e.g. artificial compressibility in FSI, pull-in analysis)
 - Monolitic solvers (e.g. Linearized time-harmonic Navier-Stokes)

Porting Elmer to MIC

- Porting work started Q2/12
- Focus to build ElmerSolver on a MIC
- Build process not entirely trivial
 - Initially tricks to fool automake
 - Manual editing of some resulting config-files
- ElmerSolver consistency tests
 - Initially 152 of 215 tests passed successfully
 - After a few hours of work 198 of 215 tests passed successfully

Build process

Elmer build process is based on automake

CSC

- Short term solution (current)
 - Trap execve to redirect configure test with ssh
 - LD_PRELOAD=./xmatic.so ./configure
 - Manual editing of some Makefiles
- Long term solution(s) (in progress)
 - Using binfmt_misc from Linux kernel
 - Permanently switch to using cmake

Automake with binfmt_misc

Prequisities

- Passwordless ssh access to MIC
- Home directories mounted with nfs
- Set up micrun -script (ssh wrapper)
- Add K1OM architecture definition to binfmt_misc dictionary to execute native MIC binaries via micrun
- Any application using automake can be cross-compiled to MIC with this approach

Elmer OpenMP status

- ElmerSolver library routines are generally thread safe
- Environment variable OMP_NUM_THREADS must be set, the default is to use a single thread
- ElmerSolver internal tests run with OMP NUM THREADS>1
 - 228 of 231 tests pass successfully
 - Test failures are due to lack of tolerances

Elmer OpenMP status (cont.)

With OMP NUM THREADS undefined

> unset OMP NUM THREADS > mpirun -np 2 ElmerSolver mpi ELMER SOLVER (v 7.0) STARTED AT: 2013/04/02 15:46:43 ELMER SOLVER (v 7.0) STARTED AT: 2013/04/02 15:46:43 ParCommInit: Initialize #PEs: WARNING:: MAIN: OMP NUM THREADS not set. Using only 1 thread. WARNING:: MAIN: OMP NUM THREADS not set. Using only 1 thread. MATN: MATN: ========= MAIN: ElmerSolver finite element software, Welcome! MAIN: This program is free software licensed under (L)GPL MAIN: Copyright 1st April 1995 - , CSC - IT Center for Science Ltd. MAIN: Webpage http://www.csc.fi/elmer, Email elmeradm@csc.fi MAIN: Library version: 7.0 (Rev: 6103M) MAIN: Running in parallel using 2 tasks.

Elmer OpenMP status (cont.)

With OMP NUM THREADS=4

MAIN: Running in parallel with 4 threads per task.

Elmer OpenMP status (cont.)

- Internally OpenMP threading supported by
 - Solver API routines related to element assembly
 - Time integration routines
 - Sparse matrix vector products
 - Element assembly loop of some solvers (MagnetoDynamics2D, ShallowWaterNS, StatElecSolve, ThermoElectricSolver)
- Library support for OpenMP exists in
 - External BLAS routines
 - External LAPACK routines
 - Direct solvers such as Cholmod, SPQR and Pardiso

Finite element assembly

- Up to 20% of the runtime
- Linear workload growth with problem size

CSC

Critical section needed in final step
 Pseudocode:

for each Element in Elements in parallel do

compute basis for Element

compute local matrix

glue local matrix to global matrix

end do

Finite element assembly

Sandy Bridge E5, parallel scaling and efficiency

Finite element assembly

Xeon Phi, parallel scaling and efficiency

CSC

Sparse matrix-vector product, y=Ax

- Up to 80% of the total runtime
- Required by Krylov subspace methods
- Linear system solution is often the most challenging part as the model size increases
 Pseudocode:

```
for i from 1 to n in parallel do
y(i)=0
for nonzero elements of A(i,:) do
y(i)=y(i)+A(i,j)*x(j)
end do
end do
```


SpDGEMv

Sandy Bridge E5, parallel scaling and efficiency

SpDEGEMv

Xeon Phi, parallel scaling and efficiency

Threading legacy code

- Single core performance of Xeon Phi is low => be aware of Ahmdahl's law
- Perform disruptive changes if necessary
- Use tools
 - Intel Inspector XE / Intel IDB (to find threading bugs)
 - Intel Vtune (to find hotspots)

Future developments for Elmer

- Modify most important solvers to fully support OpenMP
- Modify ElmerSolver kernels to better support SIMD processing
- Expand ElmerSolver kernels to fully support OpenMP
- Experiment with offloading
- Implement parallel preconditioners

Conclusions

- ElmerSolver libraries have been ported to Intel Xeon Phi
- Porting effort was relatively easy
- Performance optimizations are in development
- Added benefit: code improvements and optimizations will also benefit CPUs

Elmer on Intel Xeon Phi

Thank you! Questions / Comments?